Precision Cooling for Business-Critical Continuity

Liebert Hiross HPW

iebert

The High Performance Wallmount Cooling Solutions for Telecom Mobile Remote Access Nodes

EME

Networ

We're **Emerson Network Power**, backed by Emerson, a global company that brings technology and engineering together to provide innovative solutions for the benefit of our customers. We're the world leader in providing **Business-Critical Continuity**[™] to organizations like yours, enabled by our product and service centres of expertise.

Telecom Mobile

Control System

For wireless telecom applications, we provide control of remote access node environmental conditions. Our product portfolio includes a wide range of configurable solutions; outdoor packaged wall-mounting cooling system for shelters, when there's not enough space available inside the site; indoor packaged floor standing cooling system, to remotely reject, the heat generated by electronic equipment from IT rooms inside buildings; split system, to adapt the cooling solution to whatever site position, dimension and layout.

Product overview

The Liebert Hiross HPW is the ultimate cooling system ideal for Mobile Telecom Network remote access nodes in shelters and containers.

The Liebert Hiross HPW units are packaged, outdoor, wall-mounted with the traditional upflow or the innovative downflow air delivery solutions.

- Direct Expansion thought to have the highest efficiency in a wide range of external environmental conditions, thanks to the generous heat exchanger surface design.
- Free cooling with the highest energy saving combining the advanced circular damper system with the downflow air distribution concept.
- Emergency free cooling with the most efficient 48V DC plug type fan to reduce the impact on the site power consumption.

Reliability Site shutdown prevention, extreme environmental conditions protection, remote site conditions control.

Protection all over the world

Remote nodes need to be kept at the right condition whatever the external temperature is. Situations in which external temperature is over 50°C as well as cases where it goes lower than -30°C have the most stringent cooling requirements.

The only reliable way to reach this target is to use the most recent refrigeration components like scroll compressors and modulating fans, together with generously designed heat exchangers.

Cooling also in emergency situations

The Network availability must be guaranteed, most of all, in emergency situations.

Even if the main power supply fails due to natural or accidental causes, Liebert Hiross HPW controls the temperature inside the site thanks to the possibility of ventilating or using the free cooling system: fans, damper and control are powered through back-up power coming from DC batteries or AC power generators.

Site conditions always under control

The possibility to remotely monitor and control the site conditions facilitates immediate reaction to any situation by allowing the operator to interact with the unit, just like being on site in front of the control panel. The standard on-board controls allow interaction with one or more units, optimizing the operation and enabling the connectivity to superior systems or third-party BMS (Dial up, SNMP, Modbus, IP communication).

Free cooling circular damper

- Enhanced energy saving
- Optimised fatigue resistance
- Higher reliability
- Fresh air modulation, 0 to 100%
- 230V AC as standard
- 48V DC power supply (optional) for emergency cooling

Flexibility Adaptive to all site layouts, suitable for critical environments, respecting the surroundings

Standardization of site preparation

Liebert Hiross HPW is available in two versions with different airflow patterns: HPW O (Upflow) and HPW D (Downflow).

For both versions the dimensions and wall cut-outs are the same.

Solving unfavourable installation situations Whatever configuration is used, the condensing section has been fitted in the cabinet upper part.

This simple design feature reduces installation restrictions due to environmental limitations: dusty environments, green areas; and the proximity of adjacent buildings is less likely to effect the condenser efficiency.

Providing the desired quietness

The use of intelligent fan speed regulation and the possibility to utilise the most appropriate cabinet within the different sizes available for the required cooling capacity permits enhanced noise reduction, allowing site operation in residential areas.

- Innovative layout Condensing section on top (all sizes) Installation limits reduced to a minimum (distance from ground)
- Easier cleaning and maintenance
 Vertical air discharge (size M) - Installation limits reduced to a minimum (distance from buildings, other units)
 - Lower noise level

Liebert

Total Cost of Ownership Target fast return on investment.

Limited energy consumption

The downflow air distribution produces unit Energy Efficiency Ratio values close to or higher than 3, even in critical environmental conditions (T higher than 40°C).

This, combined with the innovative free cooling system, can drastically reduce the yearly energy consumption.

Reduced installation impact

The cooling system is pre-charged and no pressure test is required on site. The installation is simplified thanks to the availability of pre-arranged air ducts (standard) and fast plug electrical connections (optional).

Avoiding inefficient cooling

Cooling the electronics and not the site is what effectiveness can do, not efficiency.

The possibility, thanks to the Liebert Hiross HPW downflow version, to provide cooling at the telecom equipment air intakes, reduces the typical inefficiency of indirect cooling systems.

Using the automatic commissioning software, installation and start-up can be completed in less than 25 min without the need for specialized personnel on site.

Downflow air delivery • Higher efficiency • Increased energy saving • Higher effectiveness • Increased reliability

* *

jiden.

Technical Data

Downflow (D Version)

Model		055	065	06M	08M	10M	13M	15M
Performances								
Main power supply			230 / 1N / 50				400 / 3N / 50	
Emergency power supply				48 \	/DC or 230 / 1N	I/50		
Total cooling capacity (1)	kW	5,5	6,3	6,5	8,9	11,7	13,0	14,9
RSensible cooling capacity (1)	kW	5,5	5,8	6,2	8,9	10,9	13,0	14,0
SHR ⁽¹⁾	-	1	0,92	0,95	1	0,93	1	0,94
Compressor AC power input	kW	1,26	1,63	1,46	1,90	2,66	2.56	3,29
Evaporator fan DC power input	kW	0,10	0,10	0,10	0,28	0,45	0,45	0,82
Condenser fan AC power input	kW	0,25	0,25	0,20	0,22	0,72	0,68	0,69
Evaporator airflow	m³/h	1110	1110	1300	1950	2300	2615	2820
Freecooling airflow	m³/h	1310	1310	1440	2420	2420	2850	3000
Condenser max. airflow	m³/h	2610	2610	3710	3710	5660	5880	5880
Outdoor SPL (2)	dB(A)	52,5	54,0	50,0	52,0	55,0	55,0	58,0
Indoor SPL (2)	dB(A)	57,0	57,0	57,0	60,0	64,0	59,0	63,0
Max. ambient temperature ⁽³⁾	°C	49,0	47,0	52,0	50,5	50,0	51,0	48,5

Technical Data

Over (O Version)

Model		05S	06S	06M	08M	10M	13M	15M
Performances								
Main power supply			230 / 1N / 50				400 / 3N / 50	
Emergency power supply				48 \	, /DC or 230 / 1N	1/50		
Total cooling capacity (1)	kW	5,3	6,0	5,7	8,2	11,1	12,0	13,8
Sensible cooling capacity (1)	kW	4,6	5,0	5,4	8,0	9,5	10,2	11,2
SHR ⁽¹⁾	-	0,87	0,83	0,95	0,98	0,86	0,85	0,80
Compressor AC power input	kW	1,25	1,63	1,49	1,93	2,68	2,60	3,30
Evaporator fan DC power input	kW	0,10	0,10	0,10	0,45	0,45	0,45	0,78
Condenser fan AC power input	kW	0,25	0,25	0,20	0,22	0,72	0,68	0,72
Evaporator airflow	m³/h	1060	1060	1360	2130	2300	2300	2450
Freecooling airflow	m³/h	1090	1090	1360	2400	2400	2700	2840
Condenser max. airflow	m³/h	2610	2610	3710	3710	5660	5880	5880
Outdoor SPL (2)	dB(A)	52,5	54,0	49,5	52,0	55,0	55,0	58,0
Indoor SPL (2)	dB(A)	57,0	57,0	57,0	64,0	64,0	64,0	67,0
Max. ambient temperature ⁽³⁾	°C	49,5	47,5	52,0	50,0	50,0	51,0	48,5

All data are referred to 48 VDC emergency version.

(1) Values are referred to 35°C outdoor temperature, to nominal power supply and the following indoor conditions:

- 30°C/39,5%R.H. at the evaporating air intake side for WM 05-15 D models

- 27°C/47%R.H. at the evaporating air intake side for WM 05-15 O models

(2) Measured with 35°C outdoor temperature, at 2m from the unit, in free field conditions (3) Referred to:

- 30°C/39,5%R.H. at the evaporating air intake side for WM 05-15 D models

- 27°C/47%R.H. at the evaporating air intake side for WM 05-15 O models

Technical Data

Unit d	leccri	ntion
Unitu	escii	puor

Model		055	06S	06M	08M	10M	13M*	15M		
Compressor type/quantity					scroll / 1					
Refrigerant					R407C					
Expansion device				the	ermostatic v	alve				
Evaporator fan type/quantity AC										
Evaporator fan type/quantity DC (48V)				Plug / 1				Plug / 2		
Condenser fan type/quantity				Axial / 1						
Condenser fan speed control				Vá	riable (opti	on)				
Filter type/efficiency					pleated / G	3				
Electrical heating (option)			1,5			3,0		6,0		
Frame				g	alvanized st	eel				
Painting				poly	/ester / RAL	7035				
Insulation type / thickness				polye	thylene foa	m, class 1				
Width	ype / thickness mm			800						
Depth	mm		450			640				
Height	mm	1	690			1901				
Weight	kg	170	175	195	205	220	250	260		

*: Plug/2 version available on special request

Emerson Network Power EMEA

Via Leonardo da Vinci 16/18 35028 - Piove di Sacco (PD) - Italy tel. +39 0499719111 fax +39 0495841257 marketing.emea@emersonnetworkpower.com

Emerson Network Power EMEA Service Business

Via Leonardo da Vinci 16/18 35028 - Piove di Sacco (PD) - Italy tel. +39 0499719111 fax +39 0495841257 service.emea@emersonnetworkpower.com

For our local contacts, please visit us at: www.eu.emersonnetworkpower.com

	rson Netwo																																	
the in	itive and ul ndustry, En ons, healthc	nerson N	Vetwor	rk Pov	wer o	offers	a ful	l ran	ge o	f inno	ovati	ive p	owei	, pred	cisio	n coo	oling,	con	necti	vity a	and e	embe	edde	d pro	oduc	ts an	d ser	vices	s for	com				
Eme	erson Ne	etwor	k Pov	ver.																v	vwv	w.e	u.ei	ner	sor	nnet	two	rkp	ow	er.	соп	n		
	global le					usin	iess-	crit	ical	cor	ntin	uity	/™.							n	nar	keti	ing.	em	ea@	em	iers	onr	netv	wor	кро	we	er.co	m
me	AC Powe	r					Co	nne	ectiv	/ity								2	DC	Pov	ver					Ç,	Emb	bed	ded	Co	mpi	utin	g	
	i ci o ii c						Mc	nit	orin	p								Ē.	Out	Sic	le P	lant	t				Pow	er S	Swit	chi	ng e	Co	ntro	ls
F	Embedd	ed Pov	ver																															